Distinguished Microwave Lecturers

Analog Photonic Systems: Features & Techniques to Optimize Performance

Edward I. Ackerman

Photonic Systems, Inc., Building #5, 900 Middlesex Rd., Billerica, MA 01821, USA

Tel: +1-978-670-4990

Fax: +1-978-670-2510

Both the scientific and the defense communities wish to receive and process information occupying ever-wider portions of the electromagnetic spectrum. This can often create an analog-to-digital conversion "bottleneck". Analog photonic channelization, linearization, and frequency conversion systems can be designed to alleviate this bottleneck. Moreover, the low loss and dispersion of optical fiber and integrated optical waveguides enable most of the components in a broadband sensing or communication system, including all of the analog-to-digital and digital processing hardware, to be situated many feet or even miles from the antennas or other sensors with almost no performance penalty. The anticipated presentation will highlight the advantages and other features of analog photonic systems (including some specific systems that the author has constructed and tested for the US Department of Defense), and will review and explain multiple techniques for optimizing their performance.

Millimeter-wave and Terahertz Applications Enabled by Photonics

DML 2016-2018 Tadao Nagatsuma

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan

This lecture presents how effectively photonics technologies are implemented not only in generation, detection and transmission of continuous millimetre waves (MMW) and terahertz (THz) waves, but also in system applications such as communications, measurements, spectroscopy and imaging to efficiently enhance their performance. After briefly reviewing key devices and components, first, wireless communications applications are discussed aiming at a data rate of terabit/s. Next, frequency-domain spectroscopy systems are presented, in particular focusing on the approach to increasing a measurement sensitivity, and a similar technique is successfully applied to visualization of MMW/THz electric-field radiation and propagation, which is crucial for the characterization of devices and systems. Finally, in order to make MMW/THz systems more compact and cost-effective, recent challenges in photonic integration technologies are described, which include monolithically integrated photonic signal generators, and hybrid integration schemes using, for example, photonic crystal platforms.